The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance.
نویسندگان
چکیده
*Recent research suggests that increasing conduit tapering progressively reduces hydraulic constraints caused by tree height. Here, we tested this hypothesis using the tallest hardwood species, Eucalyptus regnans. *Vertical profiles of conduit dimensions and vessel density were measured for three mature trees of height 47, 51 and 63 m. *Mean hydraulic diameter (Dh) increased rapidly from the tree apex to the point of crown insertion, with the greatest degree of tapering yet reported (b > 0.33). Conduit tapering was such that most of the total resistance was found close to the apex (82-93% within the first 1 m of stem) and the path length effect was reduced by a factor of 2000. Vessel density (VD) declined from the apex to the base of each tree, with scaling parameters being similar for all trees (a = 4.6; b = -0.5). *Eucalyptus regnans has evolved a novel xylem design that ensures a high hydraulic efficiency. This feature enables the species to grow quickly to heights of 50-60 m, beyond the maximum height of most other hardwood trees.
منابع مشابه
Changes in sapwood permeability and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans.
Increases in plant size and structural complexity with increasing age have important implications for water flow through trees. Water supply to the crown is influenced by both the cross-sectional area and the permeability of sapwood. It has been hypothesized that hydraulic conductivity within sapwood increases with age. We investigated changes in sapwood permeability (k) and anatomy with tree a...
متن کاملTapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees.
Vertical conduit tapering is proposed as an effective mechanism to almost eliminate the increase in hydraulic resistance with increased height. Despite this potential role, very little is known about its changes during ontogeny. Here, conduit tapering and stem morphology of young/small and old/tall individuals of Acer pseudoplatanus in the field, as well as 3-yr-old grafted trees from both age ...
متن کاملA Publication of the Ecological Society of America
We present a conceptual model linking dry-mass allocational allometry, hydraulic limitation, and vertical stratification of environmental conditions to patterns in vertical tree growth and tree height. Maximum tree height should increase with relative moisture supply and both should drive variation in apparent stomatal limitation. Carbon isotope discrimination (D) should not vary with maximum t...
متن کاملSafety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees.
Tree hydraulic architecture exhibits patterns that propagate from tissue to tree scales. A challenge is to make sense of these patterns in terms of trade-offs and adaptations. The universal trend for conduits per area to decrease with increasing conduit diameter below the theoretical packing limit may reflect the compromise between maximizing the area for conduction versus mechanical support an...
متن کاملTesting the equi-resistance principle of the xylem transport system in a small ash tree: empirical support from anatomical analyses.
In plants, water flows from roots to leaves through a complex network of xylem conduits. The xylem architecture is characterized by the conduit enlargement towards the stem base and the multiplication of conduits near the apices of lateral branches. The xylem architecture of a small ash tree was analysed by measuring the vessel hydraulic diameter (Dh) and number (N) at different heights along t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The New phytologist
دوره 187 4 شماره
صفحات -
تاریخ انتشار 2010